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SUMMARY

Homologous recombinational repair is a major DNA repair pathway that preserves chromosomal

integrity by removing double-strand breaks, crosslinks, and other DNA damage.  In eukaryotic

cells, the Rad51 paralogs (XRCC2, XRCC3, Rad51B, Rad51C, and Rad51D) are involved in this

process, although their exact functions are largely undetermined.  All five paralogs contain

ATPase motifs, and XRCC3 appears to exist in a single complex with Rad51C. To begin to

examine the function of this Rad51C-XRCC3 complex, we generated mammalian expression

vectors that produce human wild-type XRCC3 or mutant XRCC3 with either a non-conservative

mutation (K113A) or a conservative mutation (K113R) in the GKT Walker A box of the ATPase

motif.  The three vectors were independently transfected into Xrcc3-deficient irs1SF CHO cells.

Wild-type XRCC3 complemented irs1SF cells, albeit to varying degrees, while ATPase mutants

had no complementing activity, even when the mutant protein was expressed at comparable

levels to that in wild-type-complemented clones.  Because of the mutants’ dysfunction, we

propose that ATP binding and hydrolyzing activities of XRCC3 are essential.  We tested in vitro

complex formation by wild-type and mutant XRCC3 with His6-tagged Rad51C upon co-

expression in bacteria, nickel affinity purification, and western blotting.  Wild-type and K113A

mutant XRCC3 formed stable complexes with Rad51C and co-purified with Rad51C, while the

K113R mutant did not and was predominantly insoluble.  Addition of 5 mM ATP, but not ADP,

also abolished complex formation by the wild-type proteins.  These results suggest that XRCC3

is likely to regulate the dissociation and formation of Rad51C-XRCC3 complex through ATP

binding and hydrolysis, with both processes being essential for the complex’s ability to

participate in HRR.
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INTRODUCTION

Homologous recombinational repair (HRR)1 is a major DNA repair pathway that preserves

chromosomal integrity during DNA replication and contributes to the removal of double-strand

breaks (DSBs) and interstrand crosslinks from exogenous agents [see reviews by (1-3)]. HRR

likely helps prevent DSBs arising during normal DNA replication and promotes their removal in

an error-free manner when they do arise.  In eukaryotic cells, this process is mediated by the

highly conserved Rad51 DNA strand-transferase and associated proteins that include distant

relatives of Rad51, which are referred to as the Rad51 paralogs (XRCC2, XRCC3, Rad51B,

Rad51C, and Rad51D).  At least two stable complexes (a dimeric complex composed of XRCC3

and Rad51C and a larger complex composed of XRCC2, Rad51B, Rad51C, and Rad51D) have

been found (4-8).  However, the exact role(s) these complexes play in HRR remains unclear.

Mutations in the paralog genes lead to excessive spontaneous chromosomal aberrations and

sensitivity to ionizing radiation and DNA crosslinks (9-13).

Rad51 contains ATPase motifs composed of the Walker A and B boxes, and its DNA binding

(14) and strand transferase activities (15,16) are ATP-dependent.  Structural analysis of archeal

Rad51 shows that the ATPase binding site is composed of a Walker A and Walker B motifs from

different Rad51 monomers (17), suggesting that ATP binding may act as a ‘bridge’ for protein-

protein interaction.  Interestingly, a conservative lysine (K) to arginine (R) mutation in the

Walker A box resulted in a mutant human Rad51 with efficient DNA binding and strand

transferase activity, while a nonconservative K to alanine (A) mutation inactivated Rad51 (18).

Because conservative mutation at Walker A motifs is thought to abrogate ATP hydrolysis

without inhibiting ATP binding and because nonconservative mutations result in a non-binding,

non-hydrolyzing protein, these results indicate that ATP binding alone may be sufficient to

maintain Rad51 function.
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The Rad51 paralogs also contain Walker A and B ATPase motifs.  However, unlike for

Rad51, the biological significance of these ATPase motifs is not clearly established.  In

Saccharomyces cerevisiae, the Rad51 paralogs, Rad55 and Rad57, showed differential

requirements for the Walker A motifs.  In a complementation analysis of mutant lines, neither

non-binding nor non-hydrolyzing mutants of Rad55 was able to complement IR sensitivity,

while both mutants in Rad57 showed partial complementation (19).  This result could indicate

that the ATPase binding site of yeast Rad51 paralogs may be composed of the Walker A box of

Rad55 and the Walker B box of Rad57, and that ATPase binding sites may act as sites of

protein-protein interaction for the paralogs, much like in Rad51.

Genetic analysis of the human Rad51 paralogs, Rad51C and XRCC2, has been conducted by

ectopic expression of the paralogs in Chinese hamster ovary (CHO) cell mutants.  Interestingly, a

similar trend of differential requirement for the Walker A motif seem to be emerging for the

human Rad51 paralogs as well.  A XRCC2 mutant that is unable to bind and/or hydrolyze ATP

showed partial complementation for the CHO mutation (20), while an analogous mutation in

Rad51C showed no complementing activity (21).  When Rad51C retained its ability to bind

ATP, it was able to partially restore MMC resistance in irs3 mutant V79 cells, suggesting that

ATP binding, rather than hydrolysis, may be critical for Rad51C function.  Rad51B also

hydrolyzes ATP, and the Rad51C-Rad51B dimer exhibited additive ATPase activity, although

the biological significance of the Rad51B ATPase activity is unknown (5,22).

We investigated whether the ATPase activity of XRCC3 is required for homologous

recombinational repair (23,24) as measured by its ability to complement the CHO irs1SF cell

line (9,25,26).  We report that the integrity of the Walker A motif of XRCC3 is required for

biological activity and governs Rad51C-XRCC3 complex formation.  This study is the first to
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address the relationship between complex formation and biological activity of the Rad51

paralogs.

EXPERIMENTAL PROCEDURES

Generation of Mammalian XRCC3 Expression Constructs---- Wild-type XRCC3 cDNA was

amplified by PCR from IMAGE clone 3139703 and inserted into the pEF6-V5/His vector by

TOPO-cloning (Invitrogen).  The orientation was confirmed by restriction digestion and direct

sequencing of the entire cDNA.  K to A and K to R mutations were introduced at K113 using the

Quik Change Site-directed Mutagenesis kit (Stratagene).  The missense mutations were also

confirmed by direct sequencing.

Cell Culture and Generation of XRCC3 Expressing irs1SF Cells---- Cells were grown in

monolayer or suspension culture in αMEM supplemented with 10% fetal bovine serum, 100

µg/ml streptomycin, and 100 U/ml penicillin.  Cell lines derived from irs1SF, which stably

express wild-type XRCC3 or the ATPase mutants, were created by transfection of the XRCC3

expression constructs and subsequent selection for the drug resistance marker.  Briefly, 2 × 107

irs1SF cells were washed and resuspended in 1 ml cold electroporation buffer (20 mM HEPES

(pH 7), 137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4, 6 mM glucose), mixed with 10 µg

plasmid DNA, electroporated at 250 V/1600 µF, and plated in a T150 flask for 24 hr to allow for

expression of the blasticidin resistance gene.  Cells were then plated into 10-cm dishes at ~5 ×

105 cell/dish in 20 ml medium containing 5 µg/ml blasticidin (Invitrogen) and incubated at 5%

CO2 and 37˚C for 12 days when most colonies were clearly visible by eye.  Twelve individual

colonies were isolated and expanded as clones for each transfection.
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Western blotting was performed with nuclear and cytoplasmic extracts of each clone to

confirm that XRCC3 was being expressed.  Extracts were prepared from cells using the NE-PER

nuclear and cytoplsmic extraction kit (Pierce), quantitated by the Bradford method, and

normalized for equal loading.  Extracts were separated on a 12% PAGE gel and transferred to

Hybond-ECL membrane (Amerhsam Biosciences) according to standard protocol.  Filters were

probed with 1:500 diluted primary anti-XRCC3 antibody (Novagen) and visualized by ECL

detection.  The film was then scanned and band strength was quantitated using ImageQuant

(Molecular Dyanmics). Gels were loaded at a minimal level of detection in order to stay within

the linear range of the film.

MMC and IR complementation analysis--- - Mutagen sensitivities were determined by colony

formation in 10 cm dishes.  For each dose, 300 cells were plated in triplicate and allowed twelve

days growth.  Dishes were then rinsed with saline, fixed with 95% ethanol, and stained with

Gram Crystal Violet (Becton Dickinson).  Exposure to MMC was conducted in 10-ml suspension

cultures.  At each dose, 1× 105 cells were exposed to MMC for 60 min at 37˚C, centrifuged, and

resuspended in fresh medium for plating.  For exposure to IR, 137Cs γ-irradiation was performed

on suspension cultures (1× 104 cells/ml) in 15-ml polypropylene tubes on ice.

Purification and detection of Rad51C-XRCC3 heterodimer---- In order to co-express Rad51C

and XRCC3 in E. coli, we replaced the origin of replication in pET15b (Novagen) from the

colE1 origin with the p15a origin from pACYC177 (New England Biolabs).  Using the modified

pET15b, we generated a vector for Rad51C with an N-terminal His6 tag.  We also removed all

tag sequences from pET29b (Novagen) to create a vector for untagged XRCC3.  BL21 DE3

(Novagen) was co-transformed with vectors for His-tagged Rad51C and untagged XRCC3 and

selected for resistance to both ampicillin and kanamycin.
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Liquid cultures were inoculated from individual clones and recombinant protein expression

was induced at OD600 = 0.5 with 1 mM IPTG for at least 16 hrs at 16˚C.  Cells were lysed in the

same buffer as the binding buffer for purification (50 mM Sodium Phosphate, 5 mM Tris pH 8.5)

by freeze-thaw lysis followed by sonication on ice.  Lysates were centrifuged (15,000 × g) at

4˚C, and the supernatant was loaded on to nickel-charged HiTrap Chelating HP using the AKTA

FPLC (Amersham Biosciences).  The loaded column was washed with 50 mM Sodium

Phosphate, 5 mM Tris, 5 mM imidazole and 10 mM imidazole before eluting on a gradient with

50 mM Sodium Phosphate, 5 mM Tris, 250 mM imidazole.  One elution peak containing the

dimer fraction was seen in all purification experiments.  For each dimer pair, at least two

independent transformations were conducted to ensure reproducibility.  When purification

containing 5 mM ATP or 5 MM ADP was conducted, induced cultures were split into two

aliquots.  One aliquot was used in the purification with ATP or ADP in the lysis/binding buffers,

and the second aliquot was purified with regular lysis/binding buffer.  Fractions corresponding to

the peaks detected were separated on a 12% PAGE gel and probed with either anti-XRCC3

antibody as described above or with anti-Rad51C antibody, diluted at 1:1000 (Novagen).  The

remaining steps for the detection of Rad51C were identical to XRCC3 detection.

RESULTS

Expression Level of Wild-Type Human XRCC3 Determines Its Ability to Complement MMC

and IR Sensitivity of Irs1SF---- We isolated 12 independent wild-type XRCC3-expressing

transfectants derived from the CHO mutant line irs1SF by screening blasticidin resistant

colonies.  These clones varied in the level of XRCC3 protein, as illustrated in Figure 1 for four of

them, and the extent of complementation for MMC resistance ranged from 1% to 27% (Fig. 2A

and Table 1).  We found that a narrow range of XRCC3 protein levels was associated with
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efficient complementation of MMC and IR sensitivity in irs1SF (Table 1).  At very high or very

low levels, XRCC3 did not complement MMC sensitivity.  Because of inter-species differences

and antibody specificity for human XRCC3, we are unable to compare the XRCC3 ectopic level

with that of wild-type Xrcc3 in parental AA8 cells.  Therefore, we analyzed the XRCC3 level in

all of the clones relative to that in 1SFA9 clone, which was our lowest detectable expression

level.

We conducted complementation analysis for IR sensitivity only on certain clones.  1SFK8 is

noteworthy in having substantial complementation with both MMC (20%) and IR (60%), which

is higher than we found previously for a smaller set of transfectants (26).  This differential effect

in favor of higher correction for IR sensitivity was seen previously (26).  Clone 1SFK6 was also

well corrected (26%) for MMC, but was less well corrected for IR and had a weakly adherent

colony morphology.

Both Conservative and Nonconservative ATPase Mutations in the Walker A Box Abrogate

XRCC3 Function ---- When either the conservative ATP binding mutation (K113R) or the non-

conservative mutation (ATP-nonbinding, -nonhydrolyzing K113A) was expressed in irs1SF, no

complementation was observed in any transfectants that expressed mutant protein.  Out of twelve

blasticidin-resistant clones in each group, only three clones expressed K113R XRCC3, and two

clones expressed K113A.  Both clones expressing the K113A mutant had very little XRCC3,

while K113R expression levels were substantial.  None of these six clones had any

complementation for MMC sensitivity (Fig. 2).  In order to confirm that this loss of function was

not caused by insufficient expression of the mutant protein, we compared the expression levels

of mutant and wild-type XRCC3.  For example, clone 1SFR3 had a level of the mutant protein

comparable to 1SFK8 (20% correction), and 1SFA10 has more protein than 1SFK7, which had

about ~2-fold increased MMC resistance (1% correction, which is significantly above baseline)
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(Fig. 1).  Neither mutation reduced the ability of XRCC3 to localize to the nucleus, as similar

nuclear/cytoplasmic ratios were observed for wild-type XRCC3 and the two mutant forms (Fig.

1).

Because 1SFR3 expresses K113R at a level comparable to 1SFK8, our most complemented

clone, we tested whether the 1SFR3 mutant could complement the IR sensitivity of irs1SF.  No

significant increase in IR resistance occurred (Fig. 2B).

Rad51C-XRCC3 Complex Formation Is Blocked by the K113R Mutation but Not by the

K113A Mutation---- Because XRCC3 forms a stable dimer in vivo with Rad51C, we examined

the stability of K113R and K113A mutant complexes by co-expressing Rad51C and XRCC3 in

bacterial hosts.  An N-terminal His-tag on Rad51C was used to pull down XRCC3 by nickel-

affinity purification of bacterial extracts.  Almost all Rad51C was found complexed with XRCC3

when either wild-type or K113A protein was expressed, and no visible difference was seen in the

ratio of Rad51C to XRCC3 between wild-type and mutant complexes (Fig. 3).  Unexpectedly,

when K113R was expressed, Rad51C alone was detected in the eluted fractions; no XRCC3 co-

purified.  There was a very small amount of XRCC3 in all Rad51C-containing fractions but most

was in the insoluble pellet fraction.  When photographic film was processed to significantly

over-expose Rad51C, a very faint band was observed for XRCC3 in the eluted fractions.

Starting with new transformants, we repeated this experiment three times and the results were the

same.

Excess ATP Abolishes Rad51C-XRCC3 Dimer Formation---- In order to confirm that

XRCC3 ATPase activity was directly required for complex formation, we tested whether the

presence of excess ATP during the purification process of wild-type XRCC3 and Rad51C would

result in dimer dissociation.  Because the K113R XRCC3 mutant should have maintained the

ability to bind ATP, we mimicked the conditions of ATP being bound to the ATPase site of
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XRCC3 by having excess ATP in the lysis buffer during the purification step.  We used the same

induced culture for the purification with lysis buffer with no added nucleotide and 5 mM ATP or

5 mM ADP.  We found that ATP, but not ADP, interfered with the co-purification of XRCC3

and Rad51C, similarly to what we saw for the K113R mutant (Fig. 4).  Unlike with the

purification with the K113R mutant, XRCC3 was present in the pre-purified material and flow-

through material, as expected, but was absent in any of the purified fractions containing Rad51C.

The addition of ADP had no effect on the co-purification, and the resulting western analysis

showed patterns very similar to those from wild-type and K113A mutant purification.  All

experiments were conducted three times from separate transformants and induced cultures, and

the same results were observed.

DISCUSSION

XRCC3 is an essential protein for chromosome stability and cellular resistance to IR and

certain chemical agents (1,2,9,13).  Despite its presumed importance in the repair of DSBs

through HRR, little is known about its biochemical properties or specific function.  Although it

has been shown that XRCC3 directly interacts with Rad51C to form a stable complex, the

biological significance of this complex formation remains to be defined.  We hypothesized that

Rad51C-XRCC3 complex formation is necessary for XRCC3’s biological function, as measured

by complementation of the MMC-sensitive mutant cell line irs1SF.  However, we found that this

complex can still form with the K113A mutation, which impairs HRR capacity.  We showed that

the biological activity of XRCC3 depends on its ability to bind and hydrolyze ATP, as neither

K113R nor K113A mutants were able to complement the defect in irs1SF, whereas wild-type

transfectant clones showed partial resistance to MMC and IR.  Because the sensitivity of irs1SF

to MMC is much greater (75-fold) than that for IR (2-fold), we used MMC resistance as the main
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endpoint for measuring biological activity by complementation of colony forming ability.  Clone

1SFK8 shows better correction for MMC and IR sensitivity than previously reported clones,

which makes this a valuable isogenic control for future experiments conducted on irs1SF.

Our results suggest that the ATPase activity of XRCC3 is not required for complex formation

with Rad51C since mutant K113A forms a stable complex with Rad51C.  If Rad51C binds to

XRCC3 in a manner analogous to how Rad51 forms its ring structure, the ATP-binding pocket

may be created by the Walker A box of XRCC3 and the Walker B box of Rad51C.  If so, it is

possible that ATP binding in this pocket would disrupt the heterodimer by pushing the two

proteins apart at the binding interface.  Because the K113A mutation should not allow for ATP

binding, it is possible that the two proteins may join together in the absence of such steric

hindrance.  In support of this hypothesis that ATP binding causes steric hindrance between

Rad51C and XRCC3, we did not detect wild-type XRCC3-Rad51C complex in the presence of

excess ATP.  The addition of ADP did not affect the binding of wild-type XRCC3 to Rad51C.

Thus, although ATP binding itself inhibits complex formation, ATP hydrolysis is apparently

unnecessary for complex formation.  The finding that K113A transfectants (which express a

XRCC3 mutant that maintains the ability to form the Rad51C-XRCC3 complex) do not show

complementation for MMC resistance suggests that complex formation alone is insufficient for

XRCC3’s function.  We speculate that ATP hydrolysis may be required for complex

dissociation, which may be required for biological activity.  Thus, XRCC3’s hydrolysis activity

appears necessary at a step other than in the formation of a stable Rad51C-XRCC3 complex.  A

theoretical role for the Rad51C-XRCC3 complex could be to bring Rad51C into the nucleus,

upon which the complex must dissociate, via ATP hydrolysis, so that Rad51C can associate with

the other paralogs for it to participate in HRR.  We are currently pursuing evidence for this

model.
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Interestingly, we found that K113R protein was insoluble in the bacterial lysate but soluble in

CHO cells, suggesting that K113R may exist in a complex with a stabilizing partner other than

Rad51C in vivo.  On the other hand, K113A was stable in bacteria, but appeared unstable in

CHO cells, where the levels were very low and few transformants had detectable protein. These

results suggest that ATP binding may allow XRCC3 to interact with other protein partners in

vivo.

Our results support the hypothesis that ATP binding by XRCC3 disrupts the in vivo Rad51C-

XRCC3 complex while ATP hydrolysis by XRCC3 is required at a subsequent step in HRR.

Because the ring structure for Rad51 seems to be the ‘inactive’ form of Rad51, we speculate that

the Rad51C-XRCC3 complex may be an analogous ‘resting’ state for this heterodimer (Fig. 5).

Our observation that very high expression of wild-type XRCC3 gave less complementation of

MMC sensitivity than lower levels may also support this model.  If high overexpression of

XRCC3 results in a greater proportion of Rad51C in Rad51C-XRCC3 ‘inactive’ complex, and

perhaps leading to the disruption of the Rad51B-C-D-XRCC2 complex, then HRR efficiency

could be reduced.

Of the three paralogs studied for the effect of ATPase mutations on functional

complementation in hamster mutant cells, XRCC3 has the most severe phenotype. A recently

identified naturally occurring Walker B mutant of XRCC3 completely failed to complement the

MMC sensitivity in irs1SF (27), indicating that both Walker A and B boxes of XRCC3 are

required.  Conservative, but not nonconservative, Walker A mutation in Rad51C retained the

ability to partially complement mutant irs3 cells (21).  Somewhat surprisingly, the

nonconservative mutation in XRCC2 retained its functional activity, as measured by

complementation of irs1 cells (20); even the ∆G53∆K54 XRCC2 deletion protein was functional.

If the ATPase domains of the Rad51 paralogs are structured in an analogous way to those of
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Rad51 heptamers, the Walker B box mutants of certain paralogs may be the more deleterious.

Further experimentation is necessary to address the importance of the Walker B motifs in the

paralogs besides XRCC3, and to construct a more accurate picture of complex formation and

function.

Alternatively, the differential requirement for the ATPase motifs may result from

nonequivalent uses of these active sites.  The RuvB hexamer, the bacterial helicase that is

involved in HRR and resolution of Holliday junctions, utilizes only two of its six ATP-binding

sites (28).  Because the Rad51 paralogs have been reported to associate with Holliday junctions

(22,29,30), we speculate that these proteins may be functional homologs of the RuvB proteins,

which utilize their ATPase binding sites in a similar manner.  Further biochemical analysis is

required to ascertain the exact role of ATP hydrolysis by the paralogs, but our genetic studies

provide strong evidence that both ATP binding and hydrolysis by XRCC3 are necessary for

HRR.

In conclusion, we show that ATP binding and hydrolysis by XRCC3 influence Rad51C-

XRCC3 complex formation and directly contribute to XRCC3’s functions in HRR.  We present

the novel result that XRCC3 K113A, which complexes with Rad51C in vitro, lacks in vivo

function.  Both ATPase activity and the ability for the complex to form and dissociate seem

necessary for HRR.  Our results suggest that the Rad51C-XRCC3 complex represents an

“inactive” state.  These results directly contribute to our understanding of the biochemistry of

Rad51 paralogs and the roles these proteins play in HRR.
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FIGURE LEGENDS

Fig. 1.  Western blotting for XRCC3 in irs1SF transfectants.  A, Cytoplasmic

fractions.  B, Nuclear fractions. M, Marker (38 kDa); Lanes: 1, 1SFK3; 2, 1SFK7; 3,

1SFK8; 4, 1SFK12; 5, 1SFR3; 6, 1SFR7; 7, 1SFR11; 8, 1SFA9; 9, 1SFA10. Clones

having the normal Walker A box are designated 1SFK, and mutant clones designated

1SFR and 1SFA have K to R or K to A substitutions, respectively. Quantitation was

conducted on these results and other films of similar band intensity.  Two independent

experiments were conducted to verify reproducibility by obtaining relative signal ratios

for 1SFK12 and 1SFKA9; the ratios were 4.1 and 4.2 in the two experiments.

Fig. 2. Survival curves for colony forming ability of cells exposed to MMC or IR. A,

Exposure to MMC for one hr. Symbols: AA8 (�); irs1SF (�); 1SFK1 (�); 1SFK2 (�);

1SFK3 (�); 1SFK6 (�); 1SFK7 (�); 1SFK8 (�); 1SFK9A (�); 1SFK12 (�);

1SFK12A (�); 1SFR3 (�); 1SFR7 (�); 1SFR10 (�); 1SFR11 (�); 1SFA9 (�);

1SFA10 (�) B, Exposure to 137Cs γ-rays. Symbols are the same as in panel A. 1SFR10,

which had no recombinant protein expression, is included as a transfection control.

Transfectants 1SFK9A and 1SFK12A were selected directly in MMC instead of

blasticidin.

Fig. 3.  Complex formation by Rad51C with wild-type and mutant XRCC3.  A, Wild-

type XRCC3 is brought down by His-tagged Rad51C.  Top panel:  Lanes: 1, cell lysate;

2-5, eluted fractions. Bottom panel: Lanes: 1, cell lysate; 2, flow-through; 3, first wash; 4,

second wash; 5-8, eluted fractions corresponding to lanes 2-5 on top panel.  B,  K113R

XRCC3 is not brought down by His-tagged Rad51C. Top and middle panels. Lanes: 1,
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cell lysate; 2, flow-through; 3, first wash; 4, second wash; 5-8, eluted fractions. Bottom

panel: Overexposed (20 hr) blot of XRCC3.  Lanes 1, cell lysate; 2-5, eluted fractions. C,

K113A XRCC3 forms a stable complex with His-tagged Rad51C.  Top and bottom

panels: Lanes 1, cell lysate; 2, flow-through; 3, first wash; 4, second wash; 5-8, eluted

fractions corresponding to lanes 2-5 in top panel of part A.

Fig. 4. Complex formation by Rad51C with wild-type XRCC3 in the presence off

excess ATP or ADP.  Lanes 1-5 were probed for XRCC3 and lanes 6-10 were probed for

Rad51C.  Lanes: 1 and 6, flow-through; 2 and 7, first wash; 3 and 8, second wash; 4 and

9, first eluted fraction; 5, 10 second eluted fraction.  Purifications shown here in the top

and middle panels (without or with ATP, respectively) were done from the same induced

culture.  The corresponding purification with regular lysis buffer for the culture used in

the ADP purification was very similar to that shown here with ADP (data not shown).

The background lower band seen in Lane 1 of the top two panels for XRCC3 was cut off

in blot for the ADP purification.

Fig. 5  Heuristic model of the role of ATP binding in disrupting Rad51C-XRCC3

complex formation. The Rad51C-XRCC3 heterodimer, identified in vivo by co-

immunoprecipitation, is regulated by ATP binding, which dissociates the complex. Upon

ATP hydrolysis and release of bound ADP, XRCC3 can bind free Rad51C. Unbound

Rad51C is free to bind Rad51B and participate in the XRCC2-Rad51D-Rad51C-Rad51B

complex (4).
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Table 1.  XRCC3 expression levels and degree of

complementation of MMC sensitivity or irs1SF cells

Cell line D37 for
MMC (nM)

Fractional
correction

Relative
protein level

AA8 3800 1.0 n.a.*

irs1SF     50 0.0 n.a.

1SFK7     90 0.01 1.2

1SFK6 1020 0.26 2

1SFK12   980 0.1 4

1SFK8   900 0.20 5

1SFK3   230 0.04 14

1SFK2     90 0.01 17

1SFK1     99 0.01 31

1SFR3     50 0.0 6

1SFR11     62 0.0 7

1SFR7     50 0.0 11

1SFA9     50 0.0 1

1SFA10     50 0.0 2

*Not applicable
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